PREFERENCES, LÉVY JUMPS AND OPTION PRICING

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing with Jumps

The double barrier option is characterized by pay-off with strike K, maturity T, upper Su and lower Sd barrier levels and the corresponding rebates φu and φd which can be time dependent. We divide last four quantities by strike K and introduce new variables x = ln(S/K), xu = ln(Su/K), xd = ln(Sd/K). The value of European double barrier call option U(t, x) satisfies the extended Black-Scholes eq...

متن کامل

Efficient option pricing under Lévy processes, with CVA and FVA

We generalize the Piterbarg [1] model to include (1) bilateral default risk as in Burgard and Kjaer [2], and (2) jumps in the dynamics of the underlying asset using general classes of Lévy processes of exponential type. We develop an efficient explicit-implicit scheme for European options and barrier options taking CVA-FVA into account. We highlight the importance of this work in the context of...

متن کامل

Option Pricing in Some Non-Lévy Jump Models

This paper considers pricing European options in a large class of one-dimensional Markovian jump processes known as subordinate diffusions, which are obtained by time changing a diffusion process with an independent Lévy or additive random clock. These jump processes are nonLévy in general, and they can be viewed as natural generalization of many popular Lévy processes used in finance. Subordin...

متن کامل

Fast exponential time integration scheme for option pricing with jumps

A fast exponential time integration scheme is considered for pricing European and double barrier options in jump-diffusion models. After spatial discretization, the option pricing problem is transformed into the product of a matrix exponential and a vector, while the matrix bears a Toeplitz structure. The shift-and-invert Arnoldi method is then employed for fast approximations to such operation...

متن کامل

A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models

We present a finite difference method for solving parabolic partial integro-differential equations with possibly singular kernels which arise in option pricing theory when the random evolution of the underlying asset is driven by a Lévy process or, more generally, a time-inhomogeneous jumpdiffusion process. We discuss localization to a finite domain and provide an estimate for the localization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Financial Economics

سال: 2007

ISSN: 2010-4952,2010-4960

DOI: 10.1142/s2010495207500017